

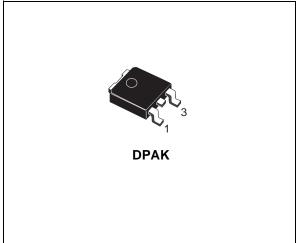
STD22NM20N

N-CHANNEL 200V - 0.088Ω - 22A DPAK ULTRA LOW GATE CHARGE MDmesh™ II MOSFET

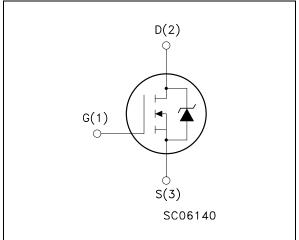
Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	Ι _D
STD22NM20N	200 V	< 0.105 Ω	22 A

- WORLDWIDE LOWEST GATE CHARGE
- TYPICAL $R_{DS}(on) = 0.088 \Omega$
- HIGH dv/dt and AVALANCHE CAPABILITIES
- LOW INPUT CAPACITANCE
- LOW GATE RESISTANCE


DESCRIPTION

This 200V MOSFET with a new advanced layout brings all unique advantages of MDmesh technology to lower voltages. The device exhibits worldwide lowest gate charge for any given onresistance. Its use is therefore ideal as primary switch in isolated DC-DC converters for Telecom and Computer applications. Used in combination with secondary-side low-voltage STripFET[™] products, it contributes to reducting losses and boosting effeciency.


APPLICATIONS

The MDmesh[™] family is very suitable for increasing power density allowing system miniaturization and higher efficiencies

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	SALES TYPE MARKING		PACKAGING
STD22NM20NT4	STD22NM20NT4 D22NM20N		TAPE & REEL

Rev. 5

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	200	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	200	V
V _{GS}	Gate- source Voltage	± 20	V
۱ _D	Drain Current (continuous) at $T_C = 25^{\circ}$ Drain Current (continuous) at $T_C = 100^{\circ}$	22 13.7	A A
I _{DM} (*)	Drain Current (pulsed)	88	A
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$	100	W
	Derating Factor	0.8	W/°C
dv/dt (2)	Peak Diode Recovery voltage slope	14	V/ns
T _j T _{stg}	Storage Temperature Max Operating Junction Temperature	150 -65 to 150	℃ ℃

Table 3: Absolute Maximum ratings

(*) $I_{SD} \le 22A$, di/dt $\le 400A/\mu s$, $V_{DD} = 80\% V_{(BR)DSS}$

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	1.25	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	100	°C/W
Rthj-ambT _l	Thermal Resistance Junction-pcb (*) Maximum Lead Temperature For Soldering Purpose	43 275	°C/W °C

(*) When mounted on 1 inch² FR-4 board, 2 oz Cu, t \leq 10 sec

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AS}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	22	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}$, $I_D = 22 \text{ A}$, $V_{DD} = 50 \text{ V}$)	380	mJ

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 6: On/Off

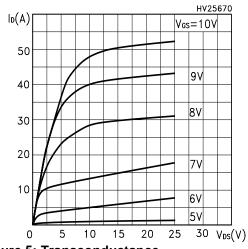
Symbol	I Parameter Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1 \text{mA}, V_{GS} = 0$	200			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125 °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3.5	4.2	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 11 A		0.088	0.105	Ω

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (2)	Forward Transconductance	V _{DS} = 15 V _, I _D =11 A		8		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		800 330 130		pF pF pF
C _{oss} eq. (**)	Equivalent Output Capacitiance	$V_{GS} = 0 V, V_{DS} = 0 V to 400 V$		225		pF
R _G	Gate Input Resistance	f= 1MHz Gate DC Bias = 0 Test Sgnal Level = 20 mV Open Drain		5		Ω
td(on) tr t _{r(Voff)} t _f	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	$V_{DD} = 100 \text{ V}, \text{ I}_D = 11 \text{ A}$ $R_G = 4.7\Omega \text{ V}_{GS} = 10 \text{ V}$ (see Figure 15)		40 15 40 11		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 100 \text{ V}, I_D = 20 \text{ A}, V_{GS} = 10 \text{ V}$ (see Figure 19)		32 6 25	50	nC nC nC

(**) $C_{oss eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 8: Source Drain Diode


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (1)	Source-drain Current Source-drain Current (pulsed)				22 88	A A
V _{SD} (2)	Forward On Voltage	$I_{SD} = 20 \text{ A}, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100 \text{ V}, \text{ T}_{j} = 25^{\circ}\text{C}$ (see test circuit, Figure 17)		160 960 12.8		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100 \text{ V}, \text{ T}_{j} = 150 ^{\circ}\text{C}$ (see test circuit, Figure 17)		225 1642 15		ns µC A

(1) Pulse width limited by safe operating area.(2) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %

Figure 3: Safe Operating Area

HV25750 $I_D(A)$ 10² 10µs 100µs 10¹ 1ms 10ms 10⁰ Tj=150°C Tc=25°C Single pulse 10 68 2 10⁰ 10¹ ⁴ ⁶⁸ ² V_{DS} (V) 10⁻¹

Figure 4: Output Characteristics

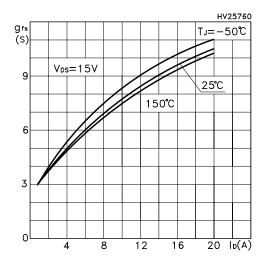
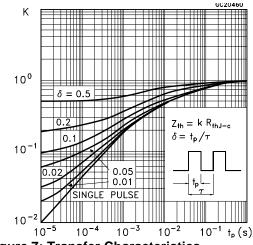



Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

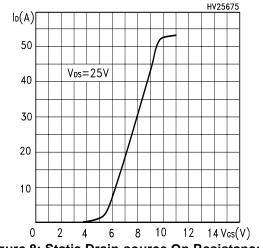
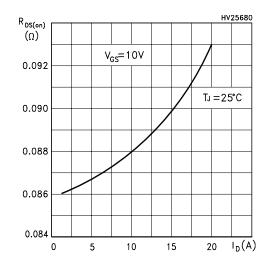



Figure 8: Static Drain-source On Resistance

47/

Figure 9: Gate Charge vs Gate-source Voltage

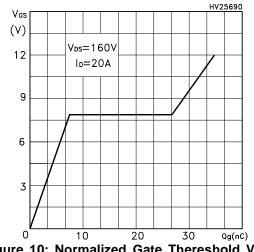
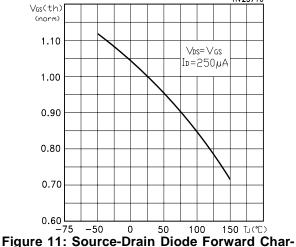
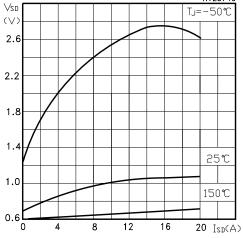




Figure 10: Normalized Gate Thereshold Voltage vs Temperature HV25710

acteristics HV25740

Figure 12: Capacitance Variations

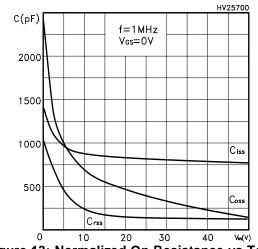


Figure 13: Normalized On Resistance vs Temperature

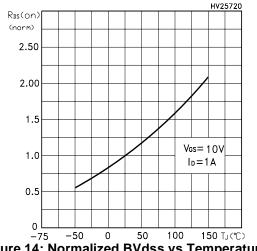


Figure 14: Normalized BVdss vs Temperature

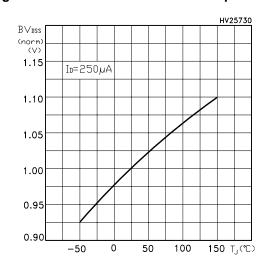


Figure 15: Unclamped Inductive Load Test Circuit

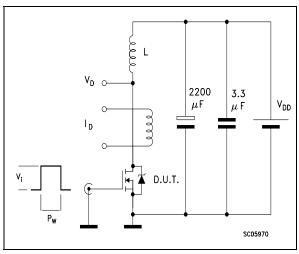


Figure 16: Switching Times Test Circuit For Resistive Load

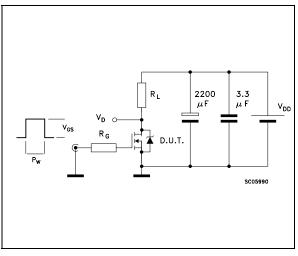
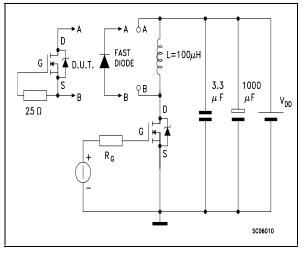
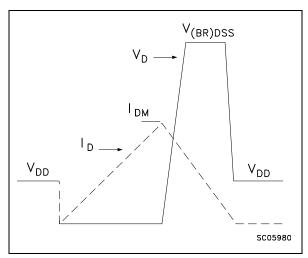
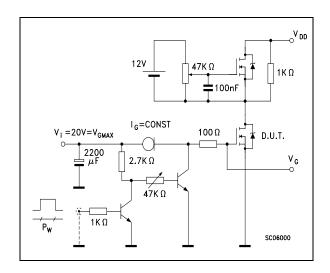
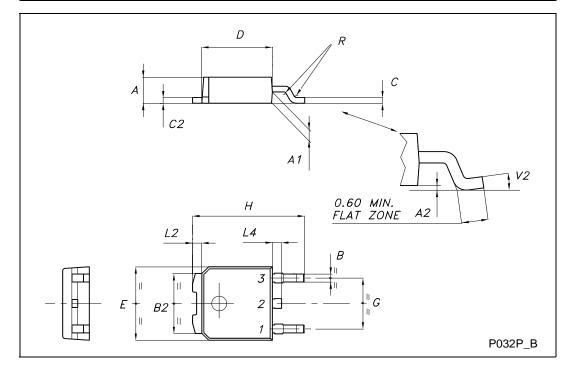
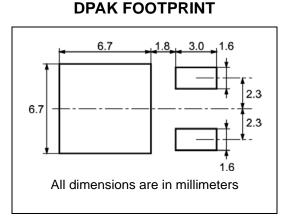
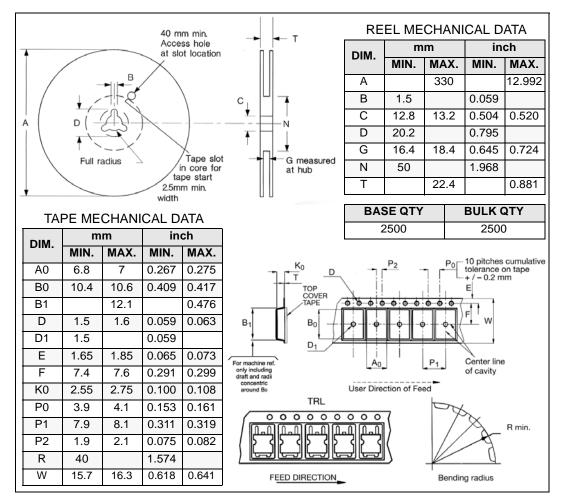



Figure 17: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 18: Unclamped Inductive Wafeform


Figure 19: Gate Charge Test Circuit


DIM. mm		mm			inch	
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
С	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
E	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
Н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0°

TAPE AND REEL SHIPMENT

Table 9: Revision History

Date	Revision	Description of Changes
31-May-2004	1	First Release.
15-Mar-2005	2	Update version.
09-May-2005	3	Complete version.
09-Jun-2005	4	New update
04-Nov-2005	5	Corrected value on Table 8

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

Á7/.